Neutron Facilities Development Overview and Plans

John Haines

AAC Meeting

February 24, 2009

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

- Highlights since last AAC meeting
- Status and plans
 - Mercury target update
 - Neutron source improvements
 - Accelerator and target facility improvements and upgrades
- Concluding remarks

NFDD Organization Supports Project and Development Mission

SNS Instrument Plan

Accelerator and Target Highlights

- Handling casks & tooling for shutter replacements delivered; 3 operational shutters installed (plugs removed)
- New HARP mechanism delivered & remote handling tooling designs completed
- New magnetic LEBT designed & under assembly
- Received Post-Irradiation Examination (PIE) tools + arranged for examining target samples in ORNL hot cells
- Spare Hg pump & proton beam window delivered
- Awarded contract for spare inner reflector plug

Mercury Target Highlights and Plans

- Mercury target module lifetime remains uncertain
 - Original target module has reached ~ 5 dpa damage level!
 - Original goal was to achieve 5 dpa lifetime (~ 7 weeks at 2 MW)
 - Therefore we have exceeded the original fluence goal, but we still do not know how long the target will last at high power (SNS power level is currently 650 kW)
 - Still plan to run the first few targets to end-of-life, i.e., mercury leaks from primary container to its water-cooled shroud, but
 - If the 1st target does not reach its end of useful life by the July 2009 maintenance shutdown it will be removed (~ 9 dpa) to minimize impact on user program and keep radiation damage of water-cooled shroud within acceptable limits

6 Managed by UT-Battelle for the U.S. Department of Energy

Mercury Target Highlights and Plans (cont'd)

- First spare target module is staged for replacement, second spare is here, and third will be here soon
- Contracts are in place to procure seven more spares over the next two years from three different suppliers
 - Plan is to operate at a power level consistent with ≤ 4 target replacements per year

Mercury Target Highlights and Plans (cont'd)

- Meanwhile, cavitation damage mitigation R&D continues
 - Window vulnerability tests completed at LANSCE-WNR in July 2008 specimens are being prepared for examination now
 - Decision point is near on whether to design Mark-II target that eliminates small Hg cooling passages in module
 - Progress on gas injection looks promising, but much work remains to optimize and implement system
 - Small gas bubbles and/or gas wall/curtain near wall
 - Collaborating with JAEA and RAL as well as several university and industrial partners
 - MIMTM testing of gas wall target concepts to 10⁶ cycles

Neutron Source Development Plans

Repair bottom downstream moderator

- Hydrogen feedline falls short of moderator vessel, resulting in low flow in moderator
- At high power, moderator has warm, low density hydrogen that results in very low neutron flux (< 20% of expected)
- BLs 13-15 (FNPB, NSE, and HYSPEC) view this moderator
- Plan to complete repair this week
- Alternate strategy is replace the inner reflector plug/ moderator assembly, but this will take ~ 18 months
- Sample the first target container and initiate PIE in ORNLs hot cells
- Complete development and deploy target beam profile monitoring system in PBW

Accelerator Development Plans (NFDD)

- Cryomodules
 - Complete first spare HB cryomodule (10CFR851 compliant) in 2009
 - Support cryomodule repair and processing R&D
- HVCM Development
 - HVCM team recently formed to focus efforts on this critical issue
 - Complete HVCM test stand in HEBT Service Building
 - Identify more reliable, "gentler" failure mode replacement capacitors and evaluate alternative IGBT and thermal management solutions, e.g.
 - Complete design of new IGBT gate driver circuit and perform first-article testing to full average power
 - Develop next generation controller for HVCM system (w/ active fault compensation, real time timing signal adjustment)
 - Develop initial designs for fast disconnect switch for primary capacitor bank

Accelerator Improvement Projects

- New process established to better manage and evaluate ongoing Accelerator Improvement Projects
 - Semi-annual review with AIP Project Manager and leadership from RAD, NFDD, and DOE-ORO
 - Review progress; focus effort; reallocate funds

	%	Budget
Project Name	Complete	(\$k)
AIP-02 HVCM Upgrade	77%	1,703
AIP-04 Injection Region Upgrade	70%	1,747
AIP-06 Accelerator Cooling Upgrade	74%	2,047
AIP-08 LEBT Chopper Upgrade	79%	787
AIP-13 SRF Cavity Processing Capability	35%	1,561
AIP-14 HVCM Fire Mitigation	67%	1,203
AIP-15 CUB & CT Water Upgrades	83%	516
AIP16 Beam Instrumentation	44%	2,529
AIP-17 MEBT Rebuncher RF	30%	1,025
AIP-18 Vacuum Controls Systems	78%	530
AIP-19 Timing Controls Systems	22%	733
AIP-20 Remote Handling	27%	3,420
AIP-21 New HVCM	76%	2,119

Future AIPs
HEBT momentum dump
Cryo backup refrigerator
Cryo return line
Extraction kicker
RID aperture

SNS Upgrade Plan

- SNS was designed from the outset to accommodate two major upgrades
 - Doubling the SNS proton beam power
 - Adding Second Target Station (STS)
- Both projects were included as veryhigh, mid-term priorities in the 2003 DOE-Office of Science Plan " Facilities for the Future of science, A Twenty Year Outlook"

SNS Power Upgrade Plan

- Power upgrade plan has been revised
 - Formerly, Power Upgrade Project (PUP) doubled SNS power
 - DOE directed us to restructure the elements of the PUP
 - Proton energy increase to 1.3 GeV (30%) forms the new PUP
 - Beam current increase (60%) and target improvements will be accomplished through R&D and Accelerator Improvement Projects (AIPs)
- Conceptual design for PUP completed, and R&D underway
 - BES review held in August 2008 and Critical Decision-1 (start prelim design) approved in Jan 2009
- Net result of PUP + R&D + AIPs will be a doubling of the SNS beam power by 2016

13 Managed by UT-Battelle for the U.S. Department of Energy

SNS power upgrade major parameters

Nomenclature:

PUP = Beam energy upgrade from 1.0 to 1.3 GeV

R&D + AIP = Increase beam current by 60% & upgrade target to > 2 MW

Primary Scope Item	Initial SN Capability	S / Upgrade	_
Kinetic energy (GeV) Nine (9) additional high-beta cryomodules Thirty-six (36) new RF systems	1.0 12 81	1.3PUP proje21scope117117	ect
New, higher power target RFQ output peak current (mA)	≥ 1 M ^v 38	W ≥ 2 MW 59	'
14 Managed by UT-Battelle	F	&D & AIPs funded from supplemental SNS operating budget	n uk

PUP Critical Decision Milestones

Milestone	Definition	Schedule Date
CD – 0	Mission Need	Nov 04A
CD – 1	Alternative Selection and Cost Range	Jan 09A
CD - 2	Performance Baseline	Dec 11
CD – 3A	Start of Long-Lead Procurements	Jan 12
CD – 3B	Start of Construction	Dec 12
CD – 4	Project Complete	Dec 15

Schedule For Power Upgrade-Related AIPs

Activity ID	Activity Name	010	FY2011	FY2012	FY2013	FY2014
CUAIP SNS	Current Upgrade AIPs					
A3840	Start CUAIPs	}				
_CUAIP.01 lo	on Source AIP					
_CUAIP.02 L	EBT AIP					
_CUAIP.03 H	VCM Upgrade AIP					
_CUAIP.04 W	arm Linac Diagnostics AIP					
_CUAIP.05 R	ing Current Diagnostics AIP					
_CUAIP.06 L	aser Stripping					
_CUAIP.07 R	ing Injection Dump Upgrade AIP					
_CUAIP.08 In	ner Reflector Plug and Moderator AIP					
_CUAIP.09 P	roton Beam Window AIP	4				
_CUAIP.10 M	lercury Target AIP					
CUAIP.11 T	arget Systems Upgrade AIP				♦	

Significant R&D efforts on mercury target and ion source are in progress

Projected Funding Need (\$M)							
	FY10	FY11	FY12	FY13	FY14	FY15	Total
PUP	0	4	18	39	21	10	92
CU AIPs	2	14	27	16	4	0	63
Operations	6	2	1	1	0	0	10
Total	8	20	46	56	25	10	165 🔮

16 Managed by UT-Battelle for the U.S. Department of Energy

SNS Second Target Station (STS)

- Scope of STS includes design, build, install, test, and commission a second target station at SNS consisting of:
 - New spallation target and supporting systems
 - Extend the SNS accelerator systems
 - Conventional support buildings
 - Initial neutron beam instruments

STS Project Status and Plans

- Mission Need Critical Decision-0 approved in January 2009!
 - Current plan: Start construction project in 2012; complete in 2019; cost range of \$815M to \$1150M
 - Prospects for earlier funding are leading us to consider accelerating this plan by two years (CD-1 in early FY2011)
 - Workforce planning to meet this aggressive goal is underway
- Major decisions required to complete conceptual design (CD-1)
 - Building site
 - Short vs. long pulse
 - Hg vs. rotating solid target
 - Target/moderator/reflector/beam line geometry

Concluding Remarks

- Accelerator and target improvements keeping pace with power ramp-up so far
- Target module lifetime remains uncertain, but minimally acceptable performance already established
- Successful completion of the PUP, related R&D and AIP activities, and STS Project is required to realize the full scientific potential of SNS
 - PUP conceptual design completed (CD-1 approved)
 - R&D on target and ion source underway; AIPs identified to achieve 60% current increase
 - STS Mission Need (CD-0) approved
- Issues and challenges:
 - Moderator repair
 - Target lifetime uncertainty
 - Planning for aggressive STS schedule

